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We show that the transport integrals of the two-site charge Kondo circuits connecting various
multi-channel Kondo simulators satisfy the generalized Wiedemann-Franz law with the universal
Lorenz ratios all greater than one. The magic Lorenz ratios are directly related to the Anderson’s
orthogonality catastrophe in quantum simulators providing some additional universal measure for
the strong electron-electron correlations. We present a full fledged theory for the magic Lorenz
ratios and discuss possible routes for the experimental verifications of the theory.

Introduction - Anderson’s orthogonality catastrophe
(OC) [1] describes an effect of a local perturbation on
a gas of N fermions. In order to screen the local im-
purity potential the quantum many-body states change
such a way that a new state becomes orthogonal to the
ground state of the system in the N→∞ thermody-
namic limit. The OC plays an important role in under-
standing of problems associated with a sudden (at time
t=0) excitation of a core electron in an atom (so-called
x-ray edge or Mahan’s singularity [2–5]) and Kondo
problem [6, 7] as well as many other topics of theo-
retical and experimental relevance. Typically, OC is
manifested in a certain power-law dependences of quan-
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FIG. 1. Cartoon for the two-site Kondo circuit proposed
for the measurement of the charge and heat transport coeffi-
cients. Two parts of the circuit fabricated out of 2DEG (or-
ange and blue zones) consisting of Quantum Point Contacts
(bottleneck areas) attached to two Quantum Dots (hatched
area inside the circles) are connected through the central
tunnelling area(dashed lines). The yellow plunger gate is
used to control a mesoscopic Coulomb blockade in the QD.
The tunnel contact is adjusted by the gate (green boxes). For
the illustration of the model connecting N - and M - channels
Kondo simulators we show the left (hot, orange) part of the
circuit with N = 3 QPCs at temperature T1 and the right
(cold, blue) part of the circuit with M = 2 QPCs being at
temperature T2 < T1. The red lines with arrows along the
painted areas denote the Integer Quantum Hall ν = 1 edge
states. The bold up/down arrows indicate different pseu-
dospin quantum number outside/inside the quantum dot.
The magic Lorenz ratio (17) for this setup R = 15/7.

tum correlators (response functions) as a function of
energy, frequency or temperature (e.g. local density of
states, x-ray absorption rate etc) directly measured ex-
perimentally. Moreover, the physics behind OC is cru-
cial for a description of many-body systems’ dynamics
and physics of quantum quenches [8, 9]. In particu-
lar, as it was shown recently in [8], the dynamics of
OC is fully characterized by the quantum speed limit.
The ultra-cold atomic gases Ramsey-interference-type
experiments with the impurity atoms [9] allow one to
study the OC in the time domain complementary to
the radio-frequency spectroscopy probes of the OC in
the frequency domain [9].

The OC in strongly correlated condensed matter
systems impacts the quantum thermodynamic quantity
known as a Wilson ratio (WR) [7]. The WR for the
quantum system is defined as the ratio of a susceptibil-
ity increment δχ/χ to a specific heat increment δC/C:

RW =
δχ/χ

δC/C
. (1)

The WR of the ideal Fermi gas is RW=1 while e.g.
for the quantum impurity single-channel Kondo effect
RW=2 being enhanced by the ratio of the total specific
heat to that coming from the spin degrees of freedom
[10]. In general, the the WR depends on the number
of the scattered channels and the spin of the impurity
[10] and provides an important measure for the effects
of strong electron-electron correlations.

In this Letter we present some arguments in favour of
getting an information about OC in nano-devices and
quantum simulators directly from two quantum trans-
port low temperature measurements. We argue that the
Lorenz ratio RL

RL · L0 =
K
GT

, (2)

(here L0=(kB/e)
2π2/3 is a Lorenz number, e is the elec-

tron’s charge and kB is Boltzmann’s constant) being an
universal proportionality coefficient between two quan-
tum transport correlation functions: the thermal K and
electric G conductances can also be used as a measure
for the strong interaction effects. We show that RL is
directly related to the OC physics uniquely character-
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izing the strongly correlated operational regimes of the
quantum simulators.
Two-site Kondo simulators have been theoretically

proposed in [11] to investigate competing phases asso-
ciated with Fermi- and Non-Fermi liquid behaviour in
different sides of the circuit and its interplay in the quan-
tum charge and heat transport. The idea is to engineer
states in a single-site part of the simulator [12, 13] by
fine-tuning it to a particular regime of a multi-channel
charge Kondo effect [14–16]. Finally, two parts are to
be connected through either a tunnel barrier or a sin-
gle mode Quantum Point Contact (QPC) to make the
circuit operating in different modes of the strongly cor-
related quantum simulators.

The single-site charge Kondo circuit is fabricated out
of semiconductor heterostructure in an Integer Quan-
tum Hall regime [12, 13]. The edge states form a Lut-
tinger Liquid while almost transparent QPCs act as
point-like quantum impurities. The large metallic is-
land (Quantum Dot, QD) provided a mesoscopic charge
quantization [17]. Adding several QPCs to the circuit
is equivalent to creating new Kondo channels. Fine-
tuning QD to a special charge degeneracy point at the
Coulomb peaks allowed to treat the two-fold degenerate
charge states as a pseudo-spin and describe the circuit
by the multi-channel Kondo model. The direct manifes-
tation of the two- and three- channel Kondo physics in
the single-site Kondo simulators was reported in [12, 13].

The first experimental realization of the two-site
Kondo circuit was done very recently in [18] trigger-
ing an immediate interest of the theoretical community.
In addition to the quantum critical phenomena being
a focal point of [18], an interesting questions about
emerging para-fermions [19, 20] characterized by frac-
tional residual entropy and fractional charge have been
raised [19–21]. Very recently, it was suggested to use
the charge Kondo simulators for direct observation of
the Kondo impurity state and universal screening using
charge pseudospin state [22] and also probing single-
electron scattering through a non-Fermi liquid charge-
Kondo device [23]. We present some arguments about
using quantum heat and charge transport coefficients for
shedding a new light on behaviour of Kondo simulators.

Model. - In this Letter we consider a two-site Kondo
circuit [11] schematically illustrated by Fig. 1. The
circuit consists of two parts fabricated out of the two-
dimensional electron gas, 2DEG, (orange, hot at a tem-
perature T1 and chemical potential µ1 and light blue,
cold at the temperature T2 < T1 and chemical potential
µ2) connected through a tunnel contact (dashed lines.)
The temperature drop ∆T = T1 − T2 and the voltage
drop ∆V = (µ1−µ2)/e occur across the tunnel barrier.
Both parts of the circuit contain QPC (bottleneck ar-
eas) and QD (hatched areas inside the big circle). We
assume that the 2DEG is in the Integer Quantum Hall
(IQH) regime with ν = 1. The red line denote the edge
state. Each QPC is fine tuned to a low-reflection (high
transparency) regime.
The effective model [24–26] contains a Gaussian part

described by the action S =
∑

i=1,2

(
S
(i)
0 + S

(i)
C

)
(index

i = 1 stands for the left part of the circuit containing
m1 = N quantum point contacts (QPC) and i = 2 used
for the right part of the circuit with m2 = M QPCs).
The free Euclidean (imaginary time) action

S
(i)
0 =

vF
2π

mi∑
α=1

∫ β

0

dt

∫ ∞

−∞
dx

[
(∂tϕα)

2

v2F
+ (∂xϕα)

2

]
, (3)

represents the bosonized non-interacting fermions [27]
(ϕα(x, t) are bosonic fields) in the constriction α =
1, ..,mi, vF is a Fermi velocity, β = 1/T is an inverse
temperature (we adopt the notations ℏ=kB=e=1) [28].

The action S
(i)
C

S
(i)
C (τ) =

∫ β

0

dtE
(i)
C

[
nτ (t) +

1

π

mi∑
α=1

ϕα(0, t)−Ni(V
(i)
g )

]2
. (4)

accounts for the mesoscopic Coulomb blockade [17] in
the metallic left/right QDs characterized by the charg-

ing energies E
(i)
C . Here Ni(V

(i)
g ) are the dimension-

less parameters controlled by the gate voltages V
(i)
g and

nτ (t) = θ(t)θ(τ − t) is a function counting the number
of electrons entering the QDs area, θ(t) is a Heaviside
(step) function.

The backscattering action in the left/right parts of the
circuit is given by the boundary sine-Gordon model:

S
(i)
bs = −D

π

mi∑
α=1

|rα|
∫ β

0

dt cos [2ϕα(0, t)] (5)

Here |rα| are reflection amplitudes of α-QPCs, D is a
bandwidth (ultraviolet cutoff of the theory). As the
QPCs do not talk to each other, we introduce an inde-
pendent one-dimensional coordinate systems (xα axes)
for each QPC separately (see Fig. 1).

Two circuits are connected through the tunnel con-
tact (dashed lines in the center of Fig.1). Corresponding
tunnel action is given by:

S
(12)
tun = −

∫ β

0

dt
[
t12Ψ̄1(−∞, t)Ψ2(−∞, t) + h.c.

]
(6)

The operators Ψi(x = −∞, t) denote the fermions in the
QDi at the position of the left/right side of the tunnel
contact.

Transport integrals - The charge current Ie and heat
current Ih depend on the temperature drop ∆T and
voltage drop ∆V across the tunnel barrier [32, 33]. As-
suming the linear response if both [∆T,∆V ] ≪ T we
define coupled transport equations(

Ie
Ih

)
=

(
L11 L12

L21 L22

)(
∆V
∆T

)
. (7)

The diagonal coefficients of the matrix L are defined as

G = L11 =
∂Ie
∂∆V

∣∣∣∣
∆T=0

, GH = L22 =
∂Ih
∂∆T

∣∣∣∣
∆V=0

(8)
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and the off-diagonal coefficients are given by

GT = L12 =
∂Ie
∂∆T

∣∣∣∣
∆V=0

=
1

T

∂Ih
∂∆V

∣∣∣∣
∆T=0

=
L21

T
(9)

The thermo-electric power (thermopower, Seebeck co-
efficient) S and thermal conductance K are defined at
zero-electric-current state Ie = 0 as

S = − ∆V

∆T

∣∣∣∣
Ie=0

=
GT

G
(10)

and

K =
∂Ih
∂∆T

∣∣∣∣
Ie=0

=
detL

L11
= G · T

[
GH

G · T
− S2

]
(11)

The Wiedemann-Franz (WF) law [32, 33] establishes
a connection between the thermal conductance K and
electrical conductance G through an universal constant,
the Lorenz number K/(GT )=L0=π2/3. The validity of
WF law is attributed to the fact that both charge and
heat are transferred by the same quasiparticles. The
deviation from the relation K/(L0GT )=1 is sometimes
called ”violation of the WF law”. In this Letter we show
that the WF law can be understood in more general
terms while the fundamental constant is not necessarily
coincides with L0.
To proceed with calculation of the charge and heat

transport through the two-site Kondo circuit we define
transport integrals (see [33, 35]):

Ln(T ) =
1

4T

∫ +∞

−∞
dϵ

ϵn

cosh2 (ϵ/2T )
T (T, ϵ), n = 0, 1, 2.

(12)
where we denote by T (T, ϵ) a transmission coefficient

T (T, ϵ) = 2π|t12|2ν1(ϵ, T )ν2(ϵ, T ). (13)

Here the local densities of state (DoS) νi(ϵ, T ) at the
position of the tunnel barrier are given by

νi(ϵ, T ) = − 1

π
cosh

( ϵ

2T

)∫ ∞

−∞
Gi

(
1

2T
+ it

)
eiϵtdt, (14)

The DoS are defined in terms of electron’s Green’s func-
tions Gi(τ) = −⟨TτΨi(−∞, τ)Ψ̄i(−∞, 0)⟩ where Tτ is
the imaginary time-ordering

Gi(τ) = − ν
(i)
0 πT

sin (πTτ)
Ki(τ) (15)

and ν
(i)
0 are bare (non-renormalized) DoS in QDi. The

correlators Ki(τ) account for the effects of interaction in
the left/right parts of the Kondo circuit and are com-
puted e.g. by using the bosonization technique [27].
The connections between the transport integrals (12)
and kinetic coefficients (7) are as follows: L11 = L0,
L12 = −L1/T and L22 = L2/T .

Lorenz ratio RL(T,N1,N2) has the following defini-
tion in terms of the transport integrals:

RL(T,N1,N2) =
3

(πT )2

[
L2

L0
−
(
L1

L0

)2
]

(16)

There are two contributions to RL(T,N1,N2) which be-
have differently at low and high temperatures

RL(T,N1,N2) = R(T,N1,N2)−
3

π2
S2(T,N1,N2).

(17)
One is R(T,N1,N2) = 3/(πT )2(L2/L0) and another
one is proportional to the square of the thermopower
S(T,N1,N2) = L1/(T · L0). Both contributions de-
pend on the temperature T and the dimensionless gate
voltages Ni. The Wiedemann-Franz law constitutes
RL = R = 1 at all temperatures and all gate voltages.
Strictly speaking, this law is not satisfied exactly at any
given set of parameters and therefore is always violated.
However, we can adopt some more general definition of
the WF law, for KC, namely if there exists some para-
metric region of the temperatures and gate voltages at
which the main contribution to RL is given by an univer-
sal constant and the non-universal corrections to it are
controllably and vanishingly small, we conclude that the
generalized WF law is satisfied. The question of whether
the generalized WF law is violated or not is therefore
reformulated as a problem of computing RL and finding
out whether or not it acquires some non-trivial value.
Besides, if this non-trivial value is different from unity,
it is interesting and important to know what kind of
useful information the WF law conveys.

Let us first summarize the key equations for the trans-
port integrals in terms of the correlators Ki [11]:

L0(T ) =
gC
2

∫ ∞

−∞

dz

cosh2 z
K+

1 (z, T ) ·K−
2 (z, T ) (18)

where gC = 2πν
(1)
0 ν

(2)
0 |t12|2 is a conductance of the

central tunnel area. We denote kernels K±
i (z, T ) =

Ki ((π/2± iz)/(πT )) obeying obvious symmetry prop-
erty K±

i (−z, T ) = K∓
i (z, T ). Here z = πTt is a di-

mensionless time. We explicitly assume an additional
temperature dependence of the pre-factors of the ker-
nels Ki (see discussion below).
The equation for L1(T ) is written as follows [11]

L1 = i(πT )
gC
4

∫ ∞

−∞

dz

cosh2 z
W [K+

1 (z, T ),K−
2 (z, T )], (19)

in terms of the Wronskian of two kernels:

W
[
K+

1 K−
2

]
=

∣∣∣∣ K+
1 (z, T ) K−

2 (z, T )
∂zK

+
1 (z, T ) ∂zK

−
2 (z, T )

∣∣∣∣ (20)

If the particle-hole (PH) symmetry in two-site Kondo
circuit holds, both kernels K±

1 and K∓
2 are even func-

tions of z (for a symmetric Kondo circuit kernels are
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linear dependent). As a result, both the L1 coeffi-
cient and thermopower vanish. However, the backscat-
tering (5) breaks the PH symmetry and therefore leads
to the finite value (at finite temperature and certain
parametric region of the gate voltages) of the Seebeck
coefficient S. We note, that the smallness of this coeffi-
cient is controlled by the smallness of the PH symmetry
breaking parameter. The PH symmetry is protected
both at Coulomb valleys (integer N ) and Coulomb
peaks (half-integer N ) where thermopower is exactly
zero. In addition, the thermopower vanishes at low
temperature regime [33]. Indeed, exact calculations
for the m2=M=1 channel charge Kondo circuit setup
in contact with the normal metal (m1=N=∞) predict
[24] for the amplitude of the Seebeck coefficient oscil-

lations Smax∝T/E
(2)
C while for M = 2 thermopower

Smax∝
√
T/E

(2)
C ln(E

(2)
C /T ) [24] (see the Table I). The

perturbative (in terms of the small backscattering am-
plitudes |rα|≪1) calculations for the M > 2 , N =

∞ Kondo circuits results in Smax∝ 3

√
T/E

(2)
C ln(E

(2)
C /T )

[21]. We therefore conclude that the thermopower con-
tribution to the Lorenz ratio R vanishes at sufficiently

low temperatures T ≪ E
(i)
C independently on imposing

the particle-hole symmetry and therefore can be disre-
garded at that limit. It is sufficient for the verification
of the WF law to compute the values of both L0 and L2

at the PH-symmetric point assuming all |rα| = |r| = 0.
Since the amplitude of the mesoscopic Coulomb block-
ade oscillations is proportional to |r| [17], the limit
|r| → 0 washes out completely the Ni dependence of
the Lorenz ratio. It is sufficient therefore to measure
the electric and the thermal conductances at T ≪ E

(i)
C

close to Coulomb peaks [34] to verify predicted magic
Lorenz ratios.

The L2 transport coefficient is written in terms of
dimensionless time integrals as follows [35]:

L2(T ) = (πT )2 · gC
2

∫ ∞

−∞
dz

(
2− cosh2[z]

)
·K+

1 (z, T ) ·K−
2 (z, T ) + cosh2[z] · ∂zK+

1 (z, T ) · ∂zK−
2 (z, T )

cosh4[z]
(21)

Results and discussion - As only the charge mode
ϕc(0, t) = 1/

√
mi

∑mi

α=1 ϕα(0, t) enters the Coulomb
blockade action (4), the PH symmetric part of the ker-
nelsKi can be obtained from themi = 1 result (see [16])

by doing a simple rescaling E
(i)
C →mi·E(i)

C , nτ→nτ/
√
mi

and Ni→Ni/
√
mi (see details of derivation in [24] and

also in Supplemental Materials of Ref. [21]). Evaluat-

ing the Gaussian action S
(i)
0 +S

(i)
C (3),(4) with the sad-

dle point method [24] and computing the fluctuations
around the saddle point similarly to [24] we obtain:

lnK±
i (τ) |r=0 = −2E

(i)
C T

∑
ωn

[1− cosωnτ ]e
−|ωn|/D

|ωn|
(
|ωn|+miE

(i)
C /π

)
≈ 2

mi
ln

(
π2T

miγE
(i)
C |sin[πTτ ]|

)
, (22)

Here we performed a summation over bosonic Matsub-
ara frequencies ωn = 2πTn assuming the limit τ ≫
[E

(i)
C ]−1. Details for similar calculations of Matsubara

sums can be found in [16, 21, 24]. Applying simultane-
ously a shift transformation and a Wick rotation from
imaginary to real time τ → 1

2T + it we finally get:

K±
i (z, T ) |r=0 =

Ai(T )

cosh2/mi [z]
, Ai(T ) =

(
π2T

γE
(i)
C mi

)2/mi

.

(23)
Here γ=eC and C=0.577 is the Euler’s constant. The
Eq.(23) is the central point for the calculation of the
Lorenz ratio. In particular, the power law behaviour

of the kernel leads to some particular temperature be-
haviour of the electric conductance attributed to the
Anderson’s orthogonality catastrophe. For example, if
m1=∞ and m2=M the conductance scales as G∝T 2/M .
The explanation of this behaviour for a particular case
M=2 and it’s connection to the Anderson’s orthogonal-
ity catastrophe was given in a seminal Matveev-Furusaki
(MF) paper [16]. Assuming that the left and the right
parts of the two-site charge Kondo circuit are separated
by the tunnel barrier and therefore can be treated inde-
pendently as an electron loses its coherence, we sketch
the MF arguments (for the sake of the Reader’s con-
venience) for arbitrary value of Kondo channel’s num-
ber M≥2. As the charge fluctuations are not sup-

pressed below the energies E
(2)
C , one can interpret the

effects of charging energy as a hard-wall boundary con-
dition for the wave function. When the electron tun-
nels through the barrier from the left part of the Kondo
circuit (KC) (let us call the left part of the circuit a
”lead” for the right part of KC), the charging energy
of the KC is lowered by moving one electron through
the right part containing M identical QPCs. Therefore,
each mode (QPC) transfers q=±e/M charge (we con-
sider both electron’s and hole’s transport). The Friedel’s
sum rule tells that the corresponding phase shifts are
δ=±π/M . Sudden change of the boundary condition
is accompanied by the large number of the electron-hole
pair excitations and results in a creation of a new state
which is almost orthogonal to the ground state of the
system. The orthogonality leads to a suppression of
the tunnelling density of states (14) ν(ϵ)∝ϵχ where ac-
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cording to Friedel’s sum rule χ=
∑

(δ/π)2 and sum is
taken over all modes. The total number of the modes is
n = 2M (M modes in the dot and M modes in the lead).
As a result, χ=2M/M2=2/M and therefore ν2∝ϵ2/M

which leads to corresponding temperature scaling of the
transport coefficient L0 [16]. The temperature scaling
of L1 is determined by the transport integral containing
ϵ·ν2(ϵ)∝ϵ1+2/M (12) and for L2, corresponding equation
(12) contains ϵ2 · ν2(ϵ)∝ϵ2+2/M . The same arguments
can be repeated for the left part of the KC containing
N independent QPCs and treating the right part as a
contact. The OC results in ν1∝ϵ2/N .

To compute the ratio L2/L0 we ignore the exact
form of the temperature dependent pre-factor inKi (23)
which will be cancelled out and obtain for L0:

L0 = A1 ·A2 ·
gC
2

∫ ∞

−∞

dz

cosh2+2/N+2/M [z]
(24)

=

(
π2T

γE
(i)
C N

)2/N (
π2T

γE
(i)
C M

)2/M
gC
2

√
πΓ
(
1 + 1

N + 1
M

)
Γ
(
3
2 + 1

N + 1
M

)
Similar procedure is applied for the calculation of L2:

L2

(πT )2
= A1 ·A2 ·

gC
2

∫ ∞

−∞

(
2− cosh2[z] + 4 sinh2[z]

NM

)
cosh4+2/N+2/M [z]

dz

=

(
π2T

γE
(i)
C N

)2/N (
π2T

γE
(i)
C M

)2/M
gC
2

×

×
√
π(M + 2)(N + 2)Γ

(
1 + 1

N + 1
M

)
2MNΓ

(
5
2 + 1

N + 1
M

) (25)

Here Γ(z) is Euler’s gamma function. Substituting
these function to equation (17), omitting vanishing

at T ≪ E
(i)
C term S2 and disregarding weak non-

universal gate-voltage-dependent corrections we finally
get RL(T→0)=RN,M , where

RN,M =
3(M + 2)(N + 2)

3NM + 2N + 2M
(26)

It directly follows from (26) that the maximal value of
Rmax = 27/7 is achieved at N = M = 1 when the or-
thogonality catastrophe leads to the maximal suppres-
sion of the density of states. This value is quite close to
the absolute upper bound Rub = 21/5 obtained in the
work [36]. The upper bound [36] is obtained assuming
that the system modelled by the scattering theory and
the transmission coefficient is merely energy dependent,
the temperature comes solely from the Fermi-function
[36]. The orthogonality catastrophe results in a spe-
cific temperature scaling of the transmission coefficient
(13) T (T ,x=ϵ/T ) |r=0∝T

2
N + 2

M fNM (x) which vanishes
at T → 0 limit. Here fNM (x) is some function depend-
ing on the number of channels and dimensionless energy
x [37]. Therefore, the upper bound Rmax = 27/7 repre-
sents the maximal value of the Lorenz ratio for the non-
Fermi liquid transmission coefficient. Interestingly, the

N M R L0 L2 Smax

1 1 27/7 T 4 T 6 T

1 2 3 T 3 T 5
√
T lnT

1 3 45/17 T 8/3 T 14/3 3
√
T lnT ♦

1 ∞ 9/5⋆ T 2 T 4 T
2 2 12/5 T 2 T 4 T

2 3 15/7 T 5/3 T 11/3 3
√
T lnT ♦

2 ∞ 3/2⋆ T T 3
√
T lnT

3 3 25/13 T 4/3 T 10/3 3
√
T lnT ♦

3 ∞ 15/11 T 2/3 T 8/3 3
√
T lnT ♦

∞ ∞ 1 T 0 T 2 0

TABLE I. Magic Lorenz ratios R for the two-site Kondo
circuit connecting N - and M - channel Kondo simulators op-
erating in either Fermi or Non-Fermi liquid regimes from
Eq. (26). The last three columns show the temperature de-
pendence of the diagonal transport integrals L0∝A1·A2 and
L2∝A1·A2·T 2 (see Eqs. (23 - 25)) and thermopower at low
temperatures. Results marked by ⋆ were reported in [38].
Mark ♦ refers to the perturbative results [21].

Lorenz ratio provides unique benchmark for the orthog-
onality catastrophe. The values of R are different even
when the temperature dependence of L0 and L2 are the
same for different two-site Kondo circuits (compare, e.g
N = 1, M = ∞ and N = M = 2, see Table I).

Expanding the general equation for R (26) for the
large values of N and M we conclude that the Lorenz
ratio R is bounded from below by its minimal value
Rmin = 1 constituting the conventional Wiedemann-
Franz law. Is R always different from unity in the
strongly correlated systems? In fact, not. We discussed
the behaviour of transport integrals in the simulator
where both electric conductance G and ratio K/T van-
ish at low temperatures. We argue that in contrast to
the statement of [39], the value of Lorenz ratio R is uni-
versal due to the orthogonality catastrophe despite of
vanishing G and K/T . If, however, both quantities re-
main finite at the T → 0 limit (which can be true both in
Fermi- and Non- Fermi liquid regimes, see [39, 40]), the
WF law is satisfied for the non-interacting leads with
the Lorenz ratio R = 1 [39, 40]. The power-law or loga-
rithmic temperature non- analyticity of the transmission
coefficient close to a critical non-Fermi liquid intermedi-
ate coupling fixed point [40] only results in vanishing at
low temperature/energy corrections to the Lorenz ratio.
It is worth mentioning that the effects of interaction

in quantum wires (leads) attached to the nano-devices
(e.g. mesoscopic islands hosting local modes [41, 42])
results in a deviation from conventional WF law. In
that case the proportionality coefficient (Lorenz ratio)
provides some important information about the effects
of interaction in the quantum wires.

Conclusions - Summarizing, we checked the validity
of the Wiedemann-Franz law in the two-site Kondo cir-
cuits. The circuits consist of two Kondo simulators
operating either in strongly correlated Fermi- or the



6

Non-Fermi liquid regimes. The two parts of the cir-
cuit are connected by the tunnel contact. It is shown
that the proportionality between thermal and charge
conductances holds even for the case of strong electron-
electron correlations. The transport integrals satisfy the
generalized Wiedemann-Franz law at low temperatures
with the magic Lorenz ratios which are always greater
than one. The magic Lorenz ratios contain some im-
portant information about the Anderson’s orthogonal-
ity catastrophe and provide a number benchmark for

the unique characterization of the two-site Kondo cir-
cuit operational regime. The ”two-islands” experimen-
tal setups [18] can be directly used for verification of the
generalized WF law and OC predictions.
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